手机浏览器扫描二维码访问
留出法(holdout
method):基本思想:将原始数据集划分为训练集和测试集两部分,其中训练集用于模型训练,而测试集则用于评估模型的性能。实施步骤:根据比例或固定的样本数量,随机选择一部分数据作为训练集,剩余部分用作测试集。优点:简单快速;适用于大规模数据集。缺点:可能由于训练集和测试集的不同导致结果的方差较高;对于小样本数据集,留出的测试集可能不够代表性。2交叉验证法(cross-validation):基本思想:将原始数据集划分为k个大小相等的子集(折),其中k-1个子集用于训练模型,剩下的1个子集用于测试模型,这个过程轮流进行k次,最后将k次实验的结果综合得到最终的评估结果。实施步骤:将数据集随机划分为k个子集,依次选择每个子集作为验证集,其余子集作为训练集,训练模型并评估性能。重复这个过程k次,取k次实验的平均值作为模型的性能指标。优点:更充分利用了数据;可以减小因样本划分不同而引起的方差。缺点:增加了计算开销;在某些情况下,对于特定划分方式可能导致估计偏差。3自助采样法(bootstrapping):基本思想:使用自助法从原始数据集中有放回地进行有偏复制采样,得到一个与原始数据集大小相等的采样集,再利用采样集进行模型训练和测试。实施步骤:从原始数据集中有放回地抽取样本,形成一个新的采样集,然后使用采样集进行模型训练和测试。优点:适用于小样本数据集,可以提供更多信息;避免了留出法和交叉验证法中由于划分过程引入的变化。缺点:采样集中约有36.8%的样本未被采到,这些未被采到样本也会对模型性能的评估产生影响;引入了自助抽样的随机性。拓展:选择何种数据集划分方法应根据以下因素进行综合考虑:1数据集大小:当数据集较大时,留出法能够提供足够的训练样本和测试样本,而且计算开销相对较小。当数据集较小时,交叉验证法和自助采样法能更好地利用数据。
2计算资源和时间限制:交叉验证需要多次训练模型并评估性能,所以会增加计算开销;自助采样法则需要从原始数据集中进行有放回的采样,可能导致计算成本上升。如果计算资源和时间有限,留出法可能是更可行的选择。3数据集特点:如果数据集具有一定的时序性,建议使用留出法或时间窗口交叉验证,确保训练集和测试集在时间上是连续的。如果数据集中存在明显的类别不平衡问题,可以考虑使用分层抽样的交叉验证来保持类别比例的一致性。4评估结果稳定性要求:交叉验证可以提供多个实验的平均结果,从而减少由于随机划分带来的方差。如果对评估结果的稳定性要求较高,交叉验证是一个不错的选择。总而言之,没有一种数据集划分方法适用于所有情况。选择合适的方法应根据具体问题的需求、数据集的大小以及可用的资源和时间来进行综合考虑,并在实践中进行实验比较以找到最佳的划分方式。2、请列举模型效果评估中准确性、稳定性和可解释性的指标。1准确性:准确率(auracy):预测正确的样本数量与总样本数量的比例。精确率(precision):预测为正类的样本中,真实为正类的比例。召回率(recall):真实为正类的样本中,被模型预测为正类的比例。f1值(f1-score):综合考虑了精确率和召回率的调和平均,适用于评价二分类模型的性能。2稳定性:方差(variance):指模型在不同数据集上性能的波动程度,方差越大说明模型的稳定性越低。交叉验证(cross
validation):通过将数据集划分为多个子集,在每个子集上训练和评估模型,然后对结果进行平均,可以提供模型性能的稳定估计。3可解释性:特征重要性(feature
importance):用于衡量特征对模型预测结果的贡献程度,常用的方法包括基于树模型的特征重要性(如gini
importance和permutation
importance)以及线性模型的系数。4可视化(visualization):通过可视化模型的结构、权重或决策边界等,帮助解释模型的预测过程和影响因素。5
shap值(shapley
additive
explanations):一种用于解释特征对预测结果的贡献度的方法,提供了每个特征对最终预测结果的影响大小。这些指标能够在评估模型效果时提供关于准确性、稳定性和可解释性的信息,但具体选择哪些指标要根据具体任务和需求进行综合考虑。
凛冬末日:全民避难所求生  医林萧韵  我手握无限物资,砸出末世安全区  都市神医,开局扇醒拜金女  小马宝莉:星空之下  快穿:盘古居然是我哥  八零守寡小娇娇,冷面糙汉被钓疯  七零大厂美人,改造反派崽暴富  穿成花瓶美人,反派老公破产了  新来的转校生竟比校霸还野  跌落山崖的我,习得神级功法  我在修仙游戏世界中浑水摸鱼  穿越明朝之我救了马皇后  我在无限游戏中永生  七零娇美人,甩掉知青当首富  逼我做妾?真太子为我入赘将军府  京港月光  武侠游戏:只有我知道剧情  空间通末世,我带飞全家很合理吧  沙雕攻以为他虐了白月光  
一个转世失败的神农弟子,想过咸鱼般的田园生活?没机会了!不靠谱的神农,会让你体验到忙碌而充实的感觉。师父别闹,就算我病死饿死从悬崖跳下去,也不种田,更不吃你赏赐的美食真香啊!本人著有完本精品农家仙田,欢迎阅读。QQ群42993787...
...
一朝重生,亲爹从军阵亡,亲娘病死,留下体弱的弟弟和青砖瓦房几间。无奈家有极品亲戚,占了我家房还想害我姐弟性命!幸得好心夫妻垂帘,才有这安稳日子过。偶然山中救得老道一位,得其倾囊相授修得一身好武艺。骤闻亲爹消息,变身潇洒少年郎,入了天下闻名的孟家军,立军功当将军,可是那个总阴魂不散的小王爷是要搞哪样?虾米?威胁我?...
余庆阳一个搬砖二十年的老工程,梦回世纪之交,海河大学毕业,接老爸的班继续搬砖。用两辈子的行动告诉老师,搬砖不是因为我学习不好!是我命中注定要搬砖已有两本百万字完本书超级村主任最强退伍兵,可以放心入坑!大国工程书友群,群聊号码492691021新书重生之大国工匠...
一个集合口袋妖怪,数码宝贝等等游戏,动漫的游戏正式登陆全球,谁才是最强的训练家,谁才是游戏里最强的宠物,且看罗炎称霸漫兽竞技场,一步一步从无名小卒爬上神坛。...
一张从始皇帝皇宫流传出的长生不老药地图,解开不死不灭之秘。一代名将,将守,从万人敌,到无人敌的重生之路!九龙吞珠读者交流群721466643)...