手机浏览器扫描二维码访问
稍后,米尔诺(Milnor)发现了七维怪球。
七维怪球是一个处处光滑的七维流形,虽然它可以连续地变形成正常的(圆球状)的七维球面,但却不能光滑地变形成正常的七维球面。
因此怪球和正常球面是同胚,但不是微分同胚。
本章一开始提到的数学家米尔诺,他在1962年获得菲尔兹奖,主要就是因为证明了怪球确实存在。
在此之前,人们根本不相信会有这种空间,所以才会被称为“怪异的”。
这是Milnor怪球的微分结构。S^4上的S^3-丛是一个纤维丛,底流形是S^4,标准纤维是S^3.这个纤维丛同胚于S^7,但是不微分同胚于S^7.
这是同一个度局部欧氏空间上可以存在不同微分结构的着名例子,或者说是拓扑结构不足以决定(如果容许的话)微分结构的例子。
如果一个拓扑空间是一个局部欧氏空间的话,就可以用局部坐标来分片刻画它,但是坐标变换只能是连续的,不一定可微。
如果在所有这问些坐标系中筛选一部分出来,使之能够覆盖整个空间,而相答互之间的坐标变换又是光滑(或某个k阶连续)的,这就相当于在该空间上指定了一个微分结构(要求微分结构极大,即,不可再向其中添加新的坐标系使之满足相容性,这只是为了让这个极大集去代表这个微分结构而已)。
Milnor怪球的例子表明,在拓扑结构所容内许的局部坐标系中挑容选微分结构的时候,有可能选出不同的微分结构,所以,微分结构是拓扑结构之上的一个新的结构。
它不是球极投影的纤维丛。
喜欢数学心请大家收藏:()数学心
神奇宝贝:开局十连抽,获得梦幻 高冷学神之攻略手册 沉睡千年醒来,749局找上门 都市重生:我在七日世界刷神宠 一本杂录 柯南!快看,你爸爸过来了! 仙骨 好运撞末日 造孽啊,曹贼竟是我自己 大清话事人 尘封的仙路 在明末奋斗 春过辽河滩 跨越阶层的恋爱 剑神韩友平第一部 包青天断案传奇故事汇 开局成为峰主,打造万古不朽仙门 偏偏宠上你 邪灵战神 开局被渣,反手投资女帝无敌
...
...
一个集合口袋妖怪,数码宝贝等等游戏,动漫的游戏正式登陆全球,谁才是最强的训练家,谁才是游戏里最强的宠物,且看罗炎称霸漫兽竞技场,一步一步从无名小卒爬上神坛。...
...
玄幻爽文九天大陆,天穹之上有九条星河,亿万星辰,皆为武命星辰,武道之人,可沟通星辰,觉醒星魂,成武命修士。传说,九天大陆最为厉害的武修,每突破一个境界,便能开辟一扇星门,从而沟通一颗星辰,直至,让九重天上,都有自己的武命星辰,化身通天彻地的太古神王。亿万生灵诸天万界,秦问天笑看苍天,他要做天空,最亮的那颗星辰...
...