书中文学网

手机浏览器扫描二维码访问

第二百四十四章 柯西主值微积分(第1页)

柯西之旅,数学家中一说到柯西,就有一种枯燥的感觉铺面而来。

总以为柯西喜欢去规定一些东西,以严谨着称。

其实这对柯西很冤枉,因为柯西其实恰恰是一个喜欢有各种创造的人。

他可以在数学中很多不同的方面做出各种各样让人意想不到的事情,这样的数学家正是一个让人兴奋的数学家。

因为他有华丽的思维,这是最吸引人的一面。

柯西最近就开始考虑,如何对一些不正常的函数进行积分了。

一般的积分的函数,往往都是连续可导的情况,对于不连续的函数,理所应当被归类到不可以积分的那个范围。

而柯西认为,不连续一些函数也是可以求面积,甚至是体积的。

在写法上直接那样写就行,倒也顺当,但是会看起来不合法,但是真的不合法吗?

这个从直觉上可以感知出来。

比如想函数y=1x*x这样的函数,在x=0是发散的。

柯西使劲看着这个函数,心中中感觉,它下包围的面积大小是可以知道的,因为这是收敛的,不是发散的。

如果在数值上是收敛的,那不就可以去认为面积不是无穷大了吗?那不就是有特定面积的?

所以,要按照微积分的基本方法去求,是不是具备一定的合理性去直接求积分,那就需要在零点处看看能不能找到一种意义,规范好了,就直接去求积分。

求积分容易,关键是需要给他找到一个合理性,这个合理性是什么?

就是连续性大致存在,而在无穷大点处也有连续不断接近的性质。

只要这样,就可以求积分。

存在的合法性,就是可以不断的接近,这种不断的接近就是一种连续性,妙哉!

在求无穷大区间的积分的时候,只需要让其变成定积分的形式,先求出积分的式子,之后让取点积分区间那个值成为一种接近无限的值。

还可以在无穷大的点哪里,取左右分开求积分那种形式,在无穷大点处也带入定值,让最后的那个积分公式取无穷来计算即可。

这种值就是柯西主值。

柯西主值是在微积分中,实数线上的某类瑕积分,为纪念柯西而得此名。

瑕积分(improperintegral)是高等数学中微积分的一种,是被积函数带有瑕点的广义积分。

在物理学中有Kramers–Kronig定理,就是说响应和耗散分别是一个函数的实部和虚部,他们之间由一个柯西主值积分相联系。

实验上一般测量响应或者耗散的其中一个,然后按Kramers–Kronig定理积分取柯西主值就可以得到另一个。

这里的积分是不能收敛的,如果不取柯西主值,物理学家就无法进行下一步。

喜欢数学心请大家收藏:()数学心

偏偏宠上你  在明末奋斗  尘封的仙路  邪灵战神  柯南!快看,你爸爸过来了!  高冷学神之攻略手册  都市重生:我在七日世界刷神宠  开局被渣,反手投资女帝无敌  沉睡千年醒来,749局找上门  神奇宝贝:开局十连抽,获得梦幻  春过辽河滩  好运撞末日  大清话事人  剑神韩友平第一部  仙骨  造孽啊,曹贼竟是我自己  跨越阶层的恋爱  开局成为峰主,打造万古不朽仙门  包青天断案传奇故事汇  一本杂录  

热门小说推荐
大国工程

大国工程

余庆阳一个搬砖二十年的老工程,梦回世纪之交,海河大学毕业,接老爸的班继续搬砖。用两辈子的行动告诉老师,搬砖不是因为我学习不好!是我命中注定要搬砖已有两本百万字完本书超级村主任最强退伍兵,可以放心入坑!大国工程书友群,群聊号码492691021新书重生之大国工匠...

抢救大明朝

抢救大明朝

朱慈烺此贼比汉奸还奸,比额李自成还能蛊惑人心!闯王李自成立马虎牙山,遥望东南,感慨万千。慈烺此子忤逆不孝,奸诈凶残,简直是曹操再世,司马复生,让他当了皇帝,全天下的逆贼奸臣刁民一定会想念朕的!大明崇祯皇帝于明孝陵前,痛哭流涕。我冤枉啊!我洪承畴真的不是朱贼慈烺的内应,我对大清可是一片忠心啊!大清兵部...

龙符

龙符

苍茫大地,未来变革,混乱之中,龙蛇并起,谁是真龙,谁又是蟒蛇?或是天地众生,皆可成龙?朝廷,江湖门派,世外仙道,千年世家,蛮族,魔神,妖族,上古巫道,千百势力,相互纠缠,因缘际会。...

武林店小二

武林店小二

江湖日报讯肯麦郎连锁客栈享誉大明各府,其总部却是京城一家名为来福的小客栈。来福客栈在江湖上大名鼎鼎,即便费用高昂,上到各派掌门下到江湖游侠,都挤破脑袋想去来福客栈吃顿饭。记者有幸请到武林盟主,揭开来福客栈的秘密!来福客栈日常一幕少林方丈,你怎么吃饭不给钱啊?偶弥陀佛,出家人身无分文,这顿饭可否算作化缘?不行!武当掌门没钱吃饭,还在后院洗碗呢!你若不给钱,就去洗茅房!来福客栈日常二幕丐帮长老,瞧你样子就没钱吃饭,你来客栈干啥?听闻来福客栈可以拿东西抵押,我这里有本上乘的秘...

每日热搜小说推荐