书中文学网

手机浏览器扫描二维码访问

第九十八章 牛顿二项式定理(第1页)

1685年,沃利斯(wallis)出版了《代数》(de

algebra),包含了牛顿二项式定理的最早描述。它也使哈利奥特的卓越贡献为人所知。二项式定理,是一个a加b的n次方的展开计算。

沃利斯对牛顿说:“你最近在研究什么?”

牛顿说:“二项式定理。”

沃利斯说:“巴斯卡三角,甚至古中国的杨辉三角而已,还有什么好研究?”

牛顿说:“没什么,仅仅是想前进一步。”

沃利斯笑说:“这些东西有用吗?”

牛顿笑着说:“我觉得有很多用,虽看朴素,但里面蕴藏着很多能量。”

沃利斯说:“比如说?”

牛顿说:“我在想开二次方可以计算,就是不断的将小数点后的数字,先写成5,大的让这个数变成4,小了让这个数变成6。然后一直不断往后写,就可以慢慢的遍历出个无穷的样子。”

沃利斯说:“那又如何,不用二项式,我蒙着这样乘下去不就可以了?”

牛顿说:“开3次,还用这样的办法的话,就困难了,同时开3次以上的话,就更难了。”

沃利斯说:“继续说。”

牛顿说:“我想吧二项式中的n,从整数变成分数来计算。也可以。”

沃利斯说:“如果是整数,可以有帕斯卡三角,或者是一种组合公式来表示系数。分数的你该怎么办呢?”

牛顿说:“很容易,把那个组合公式中的n也变成对应的分数,甚至负数都可以。”

沃利斯抬头开始想牛顿说的这个组合公式的变化。

沃利斯开始去写1加x的负一次方的展开,写成了无穷的形式,等于1减去x的平方加x的二次方减x的三次,一直到无穷。因为组合方程计算出来的是1和-1这两个数字的交替。x的奇数次方的系数是负一,x的偶数次方的系数是正一。

疑惑的说:“等等,变成负数我还可以想象,变成分数这还用意义吗?”

牛顿说:“为什么没有意义,也没有人规定一定是整数呀,你脑子太死板,不知道其中的奥秘,这里面有很多有趣的数学意义。”

沃利斯也开始尝试的开始写二分之一次方的组合方程,然后带入到1加x的二分之一次方,也写出了看着复杂一些的无穷的级数。

沃利斯看着这个花里胡哨的东西,对牛顿说:“这个东西有作用吗?看着花哨。”

偏偏宠上你  沉睡千年醒来,749局找上门  神奇宝贝:开局十连抽,获得梦幻  柯南!快看,你爸爸过来了!  好运撞末日  跨越阶层的恋爱  仙骨  一本杂录  大清话事人  剑神韩友平第一部  尘封的仙路  开局被渣,反手投资女帝无敌  在明末奋斗  春过辽河滩  造孽啊,曹贼竟是我自己  都市重生:我在七日世界刷神宠  邪灵战神  高冷学神之攻略手册  包青天断案传奇故事汇  开局成为峰主,打造万古不朽仙门  

热门小说推荐
魏武侯

魏武侯

本书架空,考据慎入  新书锦衣血途发布,欢迎收藏!  这里不是春秋战国,也不是东汉末年!  似曾相识的齐楚秦魏,截然不同的列国争雄!  来自现...

乱世情歌:农门女将

乱世情歌:农门女将

一朝重生,亲爹从军阵亡,亲娘病死,留下体弱的弟弟和青砖瓦房几间。无奈家有极品亲戚,占了我家房还想害我姐弟性命!幸得好心夫妻垂帘,才有这安稳日子过。偶然山中救得老道一位,得其倾囊相授修得一身好武艺。骤闻亲爹消息,变身潇洒少年郎,入了天下闻名的孟家军,立军功当将军,可是那个总阴魂不散的小王爷是要搞哪样?虾米?威胁我?...

九龙吞珠

九龙吞珠

一张从始皇帝皇宫流传出的长生不老药地图,解开不死不灭之秘。一代名将,将守,从万人敌,到无人敌的重生之路!九龙吞珠读者交流群721466643)...

武林店小二

武林店小二

江湖日报讯肯麦郎连锁客栈享誉大明各府,其总部却是京城一家名为来福的小客栈。来福客栈在江湖上大名鼎鼎,即便费用高昂,上到各派掌门下到江湖游侠,都挤破脑袋想去来福客栈吃顿饭。记者有幸请到武林盟主,揭开来福客栈的秘密!来福客栈日常一幕少林方丈,你怎么吃饭不给钱啊?偶弥陀佛,出家人身无分文,这顿饭可否算作化缘?不行!武当掌门没钱吃饭,还在后院洗碗呢!你若不给钱,就去洗茅房!来福客栈日常二幕丐帮长老,瞧你样子就没钱吃饭,你来客栈干啥?听闻来福客栈可以拿东西抵押,我这里有本上乘的秘...

每日热搜小说推荐