手机浏览器扫描二维码访问
受到阿贝尔的信,阿贝尔声称自己证明了五次方程没有根式解,高斯嗤之以鼻。
“不是没有解,仅仅是因为你解不出来吧?”
高斯被阿贝尔这么一搞,就想要好好琢磨关于解方程的问题,而且不仅仅想给阿贝尔这个‘民科’一个教训,同时也想要在更高层次上来回答这个问题。
这样才能体现出自己数学王子这个霸气的称号。
高斯准备想给阿贝尔一个回信,上面说:“小家伙,知不知道在百年前,就有人得知了代数学基本定理。”
代数学基本定理:任何复系数一元n次多项式方程在复数域上至少有一根(n≥1),由此推出,n次复系数多项式方程在复数域内有且只有n个根(重根按重数计算)。
高斯继续写着:“而且这是罗伯特在1608年已经证明的。”
这时,高斯停笔了,他突然觉得有些不对劲,他只是知道这件事,但是没有见过罗伯特的证明过程。
高斯放下笔,开始去寻找证明过程。
高斯知道代数基本定理在代数乃至整个数学中起着基础作用。最早该定理由德国数学家罗特于1608年提出。
高斯不知的是关于代数学基本定理的证明,后有200多种证法。迄今为止,该定理尚无纯代数方法的证明。
高斯终于找到该定理的第一个证明是法国数学家达朗贝尔给出的,但证明不完整。接着,欧拉也给出了一个证明,但也有缺陷,拉格朗日于1772年又重新证明了该定理,后经高斯仔细分析,证明仍然很不严格的。
高斯说:“我得试试如何证明代数基本定理。”
高斯没有再回信,只是专注于寻找证明方法,终于在1799年成功给出代数基本定理的第一个严格证明,在当年的哥廷根大学的博士论文中交出来。
后来有几种证明方法,复分析证明,拓扑学证明和代数证明。
大数学家J.P.塞尔曾经指出:代数基本定理的所有证明本质上都是拓扑的。
美国数学家JohnWillardMilnor在数学名着《从微分观点看拓扑》一书中给了一个几何直观的证明,但是其中用到了和临界点测度有关的sard定理。
复变函数论中,对代数基本定理的证明是相当优美的,其中用到了很多经典的复变函数的理论结果。
喜欢数学心请大家收藏:()数学心
好运撞末日 包青天断案传奇故事汇 开局被渣,反手投资女帝无敌 都市重生:我在七日世界刷神宠 柯南!快看,你爸爸过来了! 尘封的仙路 造孽啊,曹贼竟是我自己 春过辽河滩 邪灵战神 开局成为峰主,打造万古不朽仙门 在明末奋斗 偏偏宠上你 仙骨 剑神韩友平第一部 跨越阶层的恋爱 沉睡千年醒来,749局找上门 一本杂录 高冷学神之攻略手册 神奇宝贝:开局十连抽,获得梦幻 大清话事人
最强系统,我就是最强!还有谁?叶风看着众多的天骄,脸色淡定无比!获得最强系统,经验可复制对方的功法神通,可升级功法神通品阶无所不能,唯有最强!碾压苍穹,打爆世间一切不服者!...
万众瞩目之下,楚浩扔出一柄剑这轩辕剑你拿好,以后别在我面前装逼。这天,这地,这沧海,这宇宙,谁都无法阻止我。ps看完了?新书搜索从诡秘复苏开始不当人推荐票刷起来,让我们再次征战。...
甜宠无虐+日更+萌宝+智脑一个大佬和重生来的小媳妇甜蜜日常!一个娱乐小透明凭借智脑逆袭成超级影后的故事~...
男人一辈子最值得骄傲的事里包括服一次役,当一回特种兵,和世界上最强的军人交手。还有,为自己的祖国奉献一次青春,为这片热土上的人民拼一次命。这些,庄严都做到了。(此书致敬每一位曾为国家奉献过青春,流过血洒过汗的共和国军人!读者群号764555748)...
一个热爱网络游戏的痴孩子,二不垃及的真神祝愿下进入了游戏的世界。。。。。。...
余庆阳一个搬砖二十年的老工程,梦回世纪之交,海河大学毕业,接老爸的班继续搬砖。用两辈子的行动告诉老师,搬砖不是因为我学习不好!是我命中注定要搬砖已有两本百万字完本书超级村主任最强退伍兵,可以放心入坑!大国工程书友群,群聊号码492691021新书重生之大国工匠...