手机浏览器扫描二维码访问
兰勃特投影是由德国数学家兰勃特(J.H.Lambert)拟定的正形圆锥投影。
一种是角圆锥投影。设想用一个正圆锥切于或割于球面,应用等角条件将地球面投影到圆锥面上,然后沿一母线展开成平面。另一种是等积方位投影。设想球面与平面切于一点,按等积条件将经纬线投影于平面而成。
兰勃特投影按投影面与地球面的相对位置,分为正轴、横轴和斜轴3种。
三维空间的二维球壳可以按照兰伯特投影,变形成一个正弦函数阴影面积那个样子,求出面积。
四维空间中的曲率相等的二维球壳,按照兰伯特投影,会出现什么样子,如何求其面积?
那么在四维空间中的三维球壳,如何平放在三维空间中,去与三维空间中的实心球体看其中微小的差别呢?
这种差别与兰伯特投二维球面,出现的边边角角这样的形状,肯定有借鉴的类似性。
以此为基础构建高维的兰伯特边边角角的理论。
当然会与正弦函数这样的形状有关联了,或许还是一种立体的正弦函数。
那么是怎样的一个立体的正弦函数呢?
喜欢数学心请大家收藏:()数学心
春过辽河滩 开局成为峰主,打造万古不朽仙门 大清话事人 偏偏宠上你 沉睡千年醒来,749局找上门 好运撞末日 邪灵战神 尘封的仙路 一本杂录 跨越阶层的恋爱 都市重生:我在七日世界刷神宠 开局被渣,反手投资女帝无敌 造孽啊,曹贼竟是我自己 在明末奋斗 神奇宝贝:开局十连抽,获得梦幻 柯南!快看,你爸爸过来了! 剑神韩友平第一部 包青天断案传奇故事汇 仙骨 高冷学神之攻略手册
一个热爱网络游戏的痴孩子,二不垃及的真神祝愿下进入了游戏的世界。。。。。。...
...
一个浑浑噩噩的少年,在阳台吹风不小心掉了下去,死过一次的他,决定开始改变,故事从这里开始,他就是林浩...
一朝重生,亲爹从军阵亡,亲娘病死,留下体弱的弟弟和青砖瓦房几间。无奈家有极品亲戚,占了我家房还想害我姐弟性命!幸得好心夫妻垂帘,才有这安稳日子过。偶然山中救得老道一位,得其倾囊相授修得一身好武艺。骤闻亲爹消息,变身潇洒少年郎,入了天下闻名的孟家军,立军功当将军,可是那个总阴魂不散的小王爷是要搞哪样?虾米?威胁我?...
王虎穿越了,而且悲催的成了五指山下的一只老虎。我去,这是要做猴哥虎皮裙的节奏?王虎表示不服。作为一只21世纪穿越来的新时代老虎,怎么着也要和猴哥拜把子,做兄弟啊!此时此刻齐天大圣孙悟空被压五行山马上就满五百年,再有十年,波澜壮阔,影响三界格局的西天取经之旅就要开始,看王虎如何在其中搅动三界风云,与猴哥一起再掀万...
...