书中文学网

手机浏览器扫描二维码访问

第二百九十八章 卡塔朗数组合(第1页)

卡塔朗有一天去剧场排队,看到售票处因为没有找零的钱而跟顾客发生了冲突。

很多顾客都抱怨为什么剧场售票处没有足够的零钱,而剧场售票处的人也发现大家都用大整钱。

卡塔朗在想,不见所有的人用整钱,只是没有足够零钱的人排队排在前头,导致零钱被找光而发生了断供。

卡塔朗在想:“如果带零钱的人全部在前面排队,那么问题一定好解决。”

“不见得所有有零钱的人一定在前方排队,而是有一部分人有零钱的人在前面即可,但是有零钱的人是多少个呢?”

卡塔朗在假设,售票窗口前有2n个人排队买票,每张门票定价5角,每人限购一张。这些人中,只带一张5角人民币的与只带一张1元人民币的各有n人。

开始售票时,售票窗口没有角票可以找零。试问:大家都能顺利买票,售票员始终没有找不出零钱困扰的排队方法共有多少种?

卡塔朗开始思考用0代表身边带5角钱的人,1代表带1元钱的人,则本问题即可变成:有n个0和n个1,问有多少种排列方法,使排成的0、1序列里,任意前i(i可从1变到2n)个数字中,0的个数总不少于1的个数,此性质称为前束性质。

卡塔朗开始画图,发现把0看作向右走一步,把1看作向上走一步,则很明显,n个0和n个1所组成的序列将和图中从原点(0,0)到点(n,n)的递增路径是一一对应的。于是,我们只要计算路径的条数就行了。

很快卡塔朗找到了一个公式计算排队的方法,如果是有n个5角和n个1元的人的排队,则有(2n)!(n!(n+1)!)个办法。

如果是有1个人排队是1个办法,2个人排队则是1个办法,3个人排队是2个办法。此后的4、5、6、7、8、9、10个人排队分别有5,14,42,132,429,1430,4862种办法。

卡塔朗数是一个组合数,一些组合计数问题可以归结为解下列形式的递归关系:un=u1un-1+u2un-2+…+un-1u1,n≥2,且u1=1,它的解un称为卡塔朗数。

一般认为这种数是由比利时数学家卡塔朗在1838年首先提出的,但后来有人指出,实际上大数学家欧拉早在1758年就已认识到它了。

我国内蒙古师范大学罗见今副教授以大量的史料论证,所谓“卡塔朗数”的首创者其实并非欧洲人,而是我国清朝的蒙古族学者明安图(1692~1763)。他的发现早于欧拉,比卡塔朗的发现,几乎早了一百年。

喜欢数学心请大家收藏:()数学心

一本杂录  大清话事人  柯南!快看,你爸爸过来了!  高冷学神之攻略手册  在明末奋斗  跨越阶层的恋爱  仙骨  造孽啊,曹贼竟是我自己  好运撞末日  尘封的仙路  包青天断案传奇故事汇  沉睡千年醒来,749局找上门  偏偏宠上你  开局被渣,反手投资女帝无敌  剑神韩友平第一部  春过辽河滩  邪灵战神  都市重生:我在七日世界刷神宠  神奇宝贝:开局十连抽,获得梦幻  开局成为峰主,打造万古不朽仙门  

热门小说推荐
总裁大人超给力

总裁大人超给力

嫁给我,我可以替你报仇。陆白,亚洲第一跨国集团帝晟集团总裁,商业界最可怕的男人。传闻他身后有着最庞大的金融帝国,身边从未有过什么女人,传说他是夏儿想,管他呢,安心地做她的总裁夫人虐虐渣最好不过了。只是婚后生活渐渐地不一样了,看着报纸上帝晟总裁的采访,安夏儿方了你你你什么意思,不是说好我们隐婚的么老...

抢救大明朝

抢救大明朝

朱慈烺此贼比汉奸还奸,比额李自成还能蛊惑人心!闯王李自成立马虎牙山,遥望东南,感慨万千。慈烺此子忤逆不孝,奸诈凶残,简直是曹操再世,司马复生,让他当了皇帝,全天下的逆贼奸臣刁民一定会想念朕的!大明崇祯皇帝于明孝陵前,痛哭流涕。我冤枉啊!我洪承畴真的不是朱贼慈烺的内应,我对大清可是一片忠心啊!大清兵部...

大话之神

大话之神

一个热爱网络游戏的痴孩子,二不垃及的真神祝愿下进入了游戏的世界。。。。。。...

极品捉妖系统

极品捉妖系统

万众瞩目之下,楚浩扔出一柄剑这轩辕剑你拿好,以后别在我面前装逼。这天,这地,这沧海,这宇宙,谁都无法阻止我。ps看完了?新书搜索从诡秘复苏开始不当人推荐票刷起来,让我们再次征战。...

漫兽竞技场

漫兽竞技场

一个集合口袋妖怪,数码宝贝等等游戏,动漫的游戏正式登陆全球,谁才是最强的训练家,谁才是游戏里最强的宠物,且看罗炎称霸漫兽竞技场,一步一步从无名小卒爬上神坛。...

每日热搜小说推荐