书中文学网

手机浏览器扫描二维码访问

第二百四十四章 柯西主值微积分(第1页)

柯西之旅,数学家中一说到柯西,就有一种枯燥的感觉铺面而来。

总以为柯西喜欢去规定一些东西,以严谨着称。

其实这对柯西很冤枉,因为柯西其实恰恰是一个喜欢有各种创造的人。

他可以在数学中很多不同的方面做出各种各样让人意想不到的事情,这样的数学家正是一个让人兴奋的数学家。

因为他有华丽的思维,这是最吸引人的一面。

柯西最近就开始考虑,如何对一些不正常的函数进行积分了。

一般的积分的函数,往往都是连续可导的情况,对于不连续的函数,理所应当被归类到不可以积分的那个范围。

而柯西认为,不连续一些函数也是可以求面积,甚至是体积的。

在写法上直接那样写就行,倒也顺当,但是会看起来不合法,但是真的不合法吗?

这个从直觉上可以感知出来。

比如想函数y=1x*x这样的函数,在x=0是发散的。

柯西使劲看着这个函数,心中中感觉,它下包围的面积大小是可以知道的,因为这是收敛的,不是发散的。

如果在数值上是收敛的,那不就可以去认为面积不是无穷大了吗?那不就是有特定面积的?

所以,要按照微积分的基本方法去求,是不是具备一定的合理性去直接求积分,那就需要在零点处看看能不能找到一种意义,规范好了,就直接去求积分。

求积分容易,关键是需要给他找到一个合理性,这个合理性是什么?

就是连续性大致存在,而在无穷大点处也有连续不断接近的性质。

只要这样,就可以求积分。

存在的合法性,就是可以不断的接近,这种不断的接近就是一种连续性,妙哉!

在求无穷大区间的积分的时候,只需要让其变成定积分的形式,先求出积分的式子,之后让取点积分区间那个值成为一种接近无限的值。

还可以在无穷大的点哪里,取左右分开求积分那种形式,在无穷大点处也带入定值,让最后的那个积分公式取无穷来计算即可。

这种值就是柯西主值。

柯西主值是在微积分中,实数线上的某类瑕积分,为纪念柯西而得此名。

瑕积分(improperintegral)是高等数学中微积分的一种,是被积函数带有瑕点的广义积分。

在物理学中有Kramers–Kronig定理,就是说响应和耗散分别是一个函数的实部和虚部,他们之间由一个柯西主值积分相联系。

实验上一般测量响应或者耗散的其中一个,然后按Kramers–Kronig定理积分取柯西主值就可以得到另一个。

这里的积分是不能收敛的,如果不取柯西主值,物理学家就无法进行下一步。

喜欢数学心请大家收藏:()数学心

尘封的仙路  神奇宝贝:开局十连抽,获得梦幻  跨越阶层的恋爱  开局成为峰主,打造万古不朽仙门  大清话事人  高冷学神之攻略手册  剑神韩友平第一部  一本杂录  都市重生:我在七日世界刷神宠  好运撞末日  春过辽河滩  包青天断案传奇故事汇  沉睡千年醒来,749局找上门  在明末奋斗  仙骨  偏偏宠上你  造孽啊,曹贼竟是我自己  邪灵战神  开局被渣,反手投资女帝无敌  柯南!快看,你爸爸过来了!  

热门小说推荐
总裁大人超给力

总裁大人超给力

嫁给我,我可以替你报仇。陆白,亚洲第一跨国集团帝晟集团总裁,商业界最可怕的男人。传闻他身后有着最庞大的金融帝国,身边从未有过什么女人,传说他是夏儿想,管他呢,安心地做她的总裁夫人虐虐渣最好不过了。只是婚后生活渐渐地不一样了,看着报纸上帝晟总裁的采访,安夏儿方了你你你什么意思,不是说好我们隐婚的么老...

抢救大明朝

抢救大明朝

朱慈烺此贼比汉奸还奸,比额李自成还能蛊惑人心!闯王李自成立马虎牙山,遥望东南,感慨万千。慈烺此子忤逆不孝,奸诈凶残,简直是曹操再世,司马复生,让他当了皇帝,全天下的逆贼奸臣刁民一定会想念朕的!大明崇祯皇帝于明孝陵前,痛哭流涕。我冤枉啊!我洪承畴真的不是朱贼慈烺的内应,我对大清可是一片忠心啊!大清兵部...

大话之神

大话之神

一个热爱网络游戏的痴孩子,二不垃及的真神祝愿下进入了游戏的世界。。。。。。...

极品捉妖系统

极品捉妖系统

万众瞩目之下,楚浩扔出一柄剑这轩辕剑你拿好,以后别在我面前装逼。这天,这地,这沧海,这宇宙,谁都无法阻止我。ps看完了?新书搜索从诡秘复苏开始不当人推荐票刷起来,让我们再次征战。...

漫兽竞技场

漫兽竞技场

一个集合口袋妖怪,数码宝贝等等游戏,动漫的游戏正式登陆全球,谁才是最强的训练家,谁才是游戏里最强的宠物,且看罗炎称霸漫兽竞技场,一步一步从无名小卒爬上神坛。...

每日热搜小说推荐