手机浏览器扫描二维码访问
由于泊松得知了火山运动前会有磁场的变化,而这个磁场的变化发生次数不多。
泊松认为:“这种不同于地球磁场的火山磁场变换,如果发生的足够的少,就不会有火山运动,如果超过了某个次数的话,那就很可能会有异常的火山运动了。”
狄利克雷说:“你说的这个足够少有多少,足够多有多多?”
泊松认为:“足够少的意思是不可能不发生,只是不要为这样的次数而大惊小怪。但是超过这样的次数了,那么火车就危险了。”
狄利克雷说:“你有办法能找到火山磁场异常数字吗?”
泊松在考虑一种数学分布,对狄利克雷说:“你见过一种方差和期望相同的分布吗?”
狄利克雷愣住了,想了很长时间。
泊松说:“我正在考虑一种特殊的分布,适合描述单位时间内随机事件发生的次数,这个随机时间发生的概率很低,但是存在。”
狄利克雷问道:“这是从哪里推出来的?”
泊松说:“我是从二项式分布得出的,其中重复n次的伯努利,把n看出无穷大。同时发生概率p非常小。然后看单位时间发生λ次的样子,其中的k是实际的数字。”
泊松写出了泊松公式P=(x=k)=λ^k*e^(-λ)k!。
狄利克雷才知道这是根据二项式对n做无穷推导出来的。
狄利克雷说:“其中的方差和期望都等于λ吗?”
泊松说:“是的。”
1837年,泊松出版了《关于判断的概率之研究》(Recherchessurlaprobabilitédesjugements)。在书中他确立了概率的法则,给出了“泊松大数定律”,并且对于二项分布一种限制情形的离散随机变量描述了“泊松分布”。
在实际事例中,当一个随机事件,例如某电话交换台收到的呼叫、来到某公共汽车站的乘客、某放射性物质发射出的粒子、显微镜下某区域中的白血球等等,以固定的平均瞬时速率λ(或称密度)随机且独立地出现时,那么这个事件在单位时间(面积或体积)内出现的次数或个数就近似地服从泊松分布P(λ)。因此,泊松分布在管理科学、运筹学以及自然科学的某些问题中都占有重要的地位。在早期学界认为人类行为是服从泊松分布,2005年在nature上发表的文章揭示了人类行为具有高度非均匀性。
喜欢数学心请大家收藏:()数学心
偏偏宠上你 沉睡千年醒来,749局找上门 都市重生:我在七日世界刷神宠 好运撞末日 剑神韩友平第一部 一本杂录 高冷学神之攻略手册 邪灵战神 跨越阶层的恋爱 大清话事人 造孽啊,曹贼竟是我自己 包青天断案传奇故事汇 柯南!快看,你爸爸过来了! 开局被渣,反手投资女帝无敌 春过辽河滩 仙骨 在明末奋斗 神奇宝贝:开局十连抽,获得梦幻 尘封的仙路 开局成为峰主,打造万古不朽仙门
嫁给我,我可以替你报仇。陆白,亚洲第一跨国集团帝晟集团总裁,商业界最可怕的男人。传闻他身后有着最庞大的金融帝国,身边从未有过什么女人,传说他是夏儿想,管他呢,安心地做她的总裁夫人虐虐渣最好不过了。只是婚后生活渐渐地不一样了,看着报纸上帝晟总裁的采访,安夏儿方了你你你什么意思,不是说好我们隐婚的么老...
朱慈烺此贼比汉奸还奸,比额李自成还能蛊惑人心!闯王李自成立马虎牙山,遥望东南,感慨万千。慈烺此子忤逆不孝,奸诈凶残,简直是曹操再世,司马复生,让他当了皇帝,全天下的逆贼奸臣刁民一定会想念朕的!大明崇祯皇帝于明孝陵前,痛哭流涕。我冤枉啊!我洪承畴真的不是朱贼慈烺的内应,我对大清可是一片忠心啊!大清兵部...
...
一个热爱网络游戏的痴孩子,二不垃及的真神祝愿下进入了游戏的世界。。。。。。...
万众瞩目之下,楚浩扔出一柄剑这轩辕剑你拿好,以后别在我面前装逼。这天,这地,这沧海,这宇宙,谁都无法阻止我。ps看完了?新书搜索从诡秘复苏开始不当人推荐票刷起来,让我们再次征战。...
一个集合口袋妖怪,数码宝贝等等游戏,动漫的游戏正式登陆全球,谁才是最强的训练家,谁才是游戏里最强的宠物,且看罗炎称霸漫兽竞技场,一步一步从无名小卒爬上神坛。...