书中文学网

手机浏览器扫描二维码访问

第二十章 欧几里得算法(第1页)

欧几里得学生卡农对欧几里得说:“如果可以可靠的求出两个数字的最大公约数?”

欧几里得说:“用辗转相除法就可以,如果求a和b的最大公约数,如果a大于b,那就是a除以b,然后得到余数,然后再让除数b除以余数,然后一直让除数除以余数,最后余数为0的时候,得到的除数就是a和b的最大公约数。”

卡农说:“假如说1997和615这两个数字。”

欧几里得说:“1997除以615,等于3余出152。”

卡农说:“然后怎么求?”

欧几里得说:“除数除以余数,615除以152等于4余7.”

卡农说:“然后152除以7等于21余5.”

欧几里得接着说:“没错,然后7除以5,等于1余2.”

卡农说:“5除以2,等于2余1.”

欧几里得说:“2除以1,等于2余0.”

卡农说:“不能再往下了,余数已经为0,所以1997和615的最大公约数为1.”

欧几里得说:“所以说,相当于没有最大公约数。”

在以上基础上,后来数学中发展了环的概念,整环r是符合一下接个要求的:

1、a

关于加法成为一个

abel

群(其零元素记作

0);

2、乘法满足结合律:(a

*

b)*

c

=

a

*(b

*

c);

3、乘法对加法满足分配律:a

*(b

+

c)=

a

*

b

+

a

*

c,(a

+

b)*

c

=

a

*

c

+

b

*

c;

如果环

a

还满足以下乘法交换律,则称为“交换环”:

4、乘法交换律:a

*

b

=

b

*

a。

如果交换环

a

还满足以下两条件,就称为“整环”(integral

domain):

5、a

中存在非零的乘法单位元,即存在

a

中的一个元素,记作

1,满足:1

不等于

0,且对任意

a,有:e*

a

=

a

*

e=

a;

6、ab=0

=>

a=0

b=0。

而后来也引入了欧几里得整环的概念,这是抽象代数中,这是一种能作辗转相除法的整环。凡欧几里得整环必为主理想环。

一本杂录  开局成为峰主,打造万古不朽仙门  神奇宝贝:开局十连抽,获得梦幻  开局被渣,反手投资女帝无敌  包青天断案传奇故事汇  好运撞末日  都市重生:我在七日世界刷神宠  沉睡千年醒来,749局找上门  在明末奋斗  仙骨  跨越阶层的恋爱  高冷学神之攻略手册  造孽啊,曹贼竟是我自己  尘封的仙路  柯南!快看,你爸爸过来了!  大清话事人  邪灵战神  春过辽河滩  偏偏宠上你  剑神韩友平第一部  

热门小说推荐
太古神王

太古神王

玄幻爽文九天大陆,天穹之上有九条星河,亿万星辰,皆为武命星辰,武道之人,可沟通星辰,觉醒星魂,成武命修士。传说,九天大陆最为厉害的武修,每突破一个境界,便能开辟一扇星门,从而沟通一颗星辰,直至,让九重天上,都有自己的武命星辰,化身通天彻地的太古神王。亿万生灵诸天万界,秦问天笑看苍天,他要做天空,最亮的那颗星辰...

绝色占卜师:爷,你挺住!

绝色占卜师:爷,你挺住!

听说她在占卜,他捧着手眼巴巴的就过来了爱卿,你给本君算算,今晚是本君睡了国师呢?还是国师睡了本君?她哆嗦了一下,一脚就踹了过去谁都不睡!她今晚就阉了你!!重生前,她是惊才绝艳的大占卜师,重生后,她还是上知天文下知地理的一品国师,可是,她算了两世,却没算到自己这一世会犯桃花国师大人,不好了,帝君来了!卧槽!她一下子就从八卦盘里站了起来他来干什么?他不干什么!那就好那就好!她狂抹一把额头上的冷汗。小太监欲哭无泪可他说了,今晚他夜观星象,是个鸾凤和鸣...

每日热搜小说推荐