手机浏览器扫描二维码访问
对于一个包含至少2个集合的、对并运算封闭的有限集合族,至少存在一个元素,使得它在至少一半的集合里出现过。
我们来解读一下这个猜想说的啥。
首先集合,就是包含了一系列元素的合集,这里面的元素既可以是数字,也可以是变量等。
例如这是一个我们常见的数集,而且是有限的(只包括3个元素):{1,2,3}
至于无限数集,就像是自然数集、有理数集、整数集这种由无限个元素组成的集合。
当然,集合也有集合,它们组合起来,就可以被叫做集族,例如下图中F就是一个集族:
在这些集族中,有一类特殊的集族对并运算封闭。
对集族中的集合而言,并运算就是对两个集合求并集;至于并运算封闭,即是指在对任意两个集合进行并运算后,其结果仍然在这个集族中。
以下面这个集族为例:{1}{1,2}{1,2,3}{1,2,3,4}
无论是对{1}、{1,2}求并集,还是对{2,3,4}、{1}求并集,还是对{1,2}、{2,3,4}求并集……任意两个集合求并集,其结果都会在这个集族中。
所以,上面这个集族就符合并封闭集合这一要求,而并封闭猜想也正是基于此而提出。
值得注意的是,这一猜想中的“一半”是紧致的,毕竟对于任何一个集合的子集族,所有的元素恰好在一半的集合里出现过。
它于1979年被一个叫PéterFrankl的数学家提出,所以也一度被叫做Frankl猜想。
看起来似乎不难,然而到实际解决时,一众数学家才发现这并不简单。
达特茅斯学院数学教授PeterWinkler曾经在1987年就这个猜想给出尖锐的评价:
并封闭集合猜想确实很有名,除了它的起源和它的答案。
为了解决这个问题,数学家们也已经尝试过不少方法。
例如有人试着给猜想加上一些限制条件,让它在这些情况下成立。
像是将它和图论中的二分图(BipartiteGraph)联系起来,证明具备其中某种性质的集族,在这个猜想的条件下成立。
又或是给其中的元素加以限制,再加以证明……
BUT,无论是哪种方法,距离真正需要证明的猜想都还差不少距离。
来自哥伦比亚大学的助理教授WillSawin对此评价称:
它看起来似乎是个不难解决的东西,毕竟长得和那种“容易解决的问题”很像。
然而,如今却没有任何一个证明能真正搞定它。
问题就这样进度缓慢,直到2022年秋天,谷歌研究员JustinGilmer借着朋友结婚的契机,回到了罗格斯大学校园。
Gilmer回母校的时间是2022年10月,此时距他毕业离开数学学术圈,已过去7年。这些年来,他自觉无心专注纯数学领域,转而自学编程,投身了IT行业。
邪灵战神 都市重生:我在七日世界刷神宠 剑神韩友平第一部 跨越阶层的恋爱 在明末奋斗 神奇宝贝:开局十连抽,获得梦幻 包青天断案传奇故事汇 春过辽河滩 开局成为峰主,打造万古不朽仙门 好运撞末日 柯南!快看,你爸爸过来了! 大清话事人 开局被渣,反手投资女帝无敌 尘封的仙路 造孽啊,曹贼竟是我自己 偏偏宠上你 沉睡千年醒来,749局找上门 仙骨 一本杂录 高冷学神之攻略手册
...
...
朱慈烺此贼比汉奸还奸,比额李自成还能蛊惑人心!闯王李自成立马虎牙山,遥望东南,感慨万千。慈烺此子忤逆不孝,奸诈凶残,简直是曹操再世,司马复生,让他当了皇帝,全天下的逆贼奸臣刁民一定会想念朕的!大明崇祯皇帝于明孝陵前,痛哭流涕。我冤枉啊!我洪承畴真的不是朱贼慈烺的内应,我对大清可是一片忠心啊!大清兵部...
男人一辈子最值得骄傲的事里包括服一次役,当一回特种兵,和世界上最强的军人交手。还有,为自己的祖国奉献一次青春,为这片热土上的人民拼一次命。这些,庄严都做到了。(此书致敬每一位曾为国家奉献过青春,流过血洒过汗的共和国军人!读者群号764555748)...
一个集合口袋妖怪,数码宝贝等等游戏,动漫的游戏正式登陆全球,谁才是最强的训练家,谁才是游戏里最强的宠物,且看罗炎称霸漫兽竞技场,一步一步从无名小卒爬上神坛。...
玄幻爽文九天大陆,天穹之上有九条星河,亿万星辰,皆为武命星辰,武道之人,可沟通星辰,觉醒星魂,成武命修士。传说,九天大陆最为厉害的武修,每突破一个境界,便能开辟一扇星门,从而沟通一颗星辰,直至,让九重天上,都有自己的武命星辰,化身通天彻地的太古神王。亿万生灵诸天万界,秦问天笑看苍天,他要做天空,最亮的那颗星辰...