手机浏览器扫描二维码访问
常常有人说柯西是个奇葩,是一个不正常的怪人,甚至有人认为他是神经质的。
常给人一种膈应的感觉。
柯西也常常思索,自己的不正常是不是伤害了很多的人,是不是会坏掉自己的大事?
但是搞科学的人,又有几个是真正的正常人,他们都从事的是以数学和物理为主的事业,不会太喜欢跟人打交道的,所以有几分不正常也是正常的。
法国需要懂数学的人,那就是需要的是奇葩,如果不是个奇葩,就是个世俗功利的人,那种人有什么用途?难道法国的未来仅仅是要更多的世俗功力的人吗?什么创造力都没有,就领一点点薪水了此一生。这种人活着的意义是什么?
柯西陷入深思,很多函数的相加直接导致了函数性质的变化。
柯西开始寻找一种加过之后没有改变性质的函数。
这就是加性函数,可以表示为f(x+y)=f(x)+f(y)。
柯西知道,一般在正比例函数f(x)=cx情况下会满足这一点。
柯西在1821年证明f是连续的函数,后来在1875年被达布将条件减弱为f在某点连续。
存在a,b∈R,(a
f单调,或f在某开区间单调。
存在ε1>0,使得x∈[0,ε1],有f(x)≥0,或者存在ε2>0,使得x∈[0,ε2],有f(x)≤0
如果没有其他条件的话,假如承认选择公理成立,那么有无穷非f(x)=cx的函数满足该条件,这是1905年哈默(GeorgHamel)利用哈默基的概念证明的。
后来哈默尔和勒贝格知道还有其他类型的方程也满足加性函数条件。
希尔伯特第五问题是该方程的推广
存在实数c使得f(cx)≠cf(x)解称为柯西-哈默方程(Cauchy-Hamelfunction),希尔伯特第三问题中,从3-D向高维度的推广所用的德恩-哈德维格不变量(Dehn-Hadwigerinvariant(s)),其中就用到柯西-哈默方程。
喜欢数学心请大家收藏:()数学心
大清话事人 好运撞末日 包青天断案传奇故事汇 沉睡千年醒来,749局找上门 都市重生:我在七日世界刷神宠 仙骨 在明末奋斗 造孽啊,曹贼竟是我自己 高冷学神之攻略手册 剑神韩友平第一部 开局被渣,反手投资女帝无敌 偏偏宠上你 尘封的仙路 跨越阶层的恋爱 春过辽河滩 开局成为峰主,打造万古不朽仙门 一本杂录 神奇宝贝:开局十连抽,获得梦幻 柯南!快看,你爸爸过来了! 邪灵战神
一个浑浑噩噩的少年,在阳台吹风不小心掉了下去,死过一次的他,决定开始改变,故事从这里开始,他就是林浩...
一个转世失败的神农弟子,想过咸鱼般的田园生活?没机会了!不靠谱的神农,会让你体验到忙碌而充实的感觉。师父别闹,就算我病死饿死从悬崖跳下去,也不种田,更不吃你赏赐的美食真香啊!本人著有完本精品农家仙田,欢迎阅读。QQ群42993787...
...
万众瞩目之下,楚浩扔出一柄剑这轩辕剑你拿好,以后别在我面前装逼。这天,这地,这沧海,这宇宙,谁都无法阻止我。ps看完了?新书搜索从诡秘复苏开始不当人推荐票刷起来,让我们再次征战。...
...
听说她在占卜,他捧着手眼巴巴的就过来了爱卿,你给本君算算,今晚是本君睡了国师呢?还是国师睡了本君?她哆嗦了一下,一脚就踹了过去谁都不睡!她今晚就阉了你!!重生前,她是惊才绝艳的大占卜师,重生后,她还是上知天文下知地理的一品国师,可是,她算了两世,却没算到自己这一世会犯桃花国师大人,不好了,帝君来了!卧槽!她一下子就从八卦盘里站了起来他来干什么?他不干什么!那就好那就好!她狂抹一把额头上的冷汗。小太监欲哭无泪可他说了,今晚他夜观星象,是个鸾凤和鸣...