手机浏览器扫描二维码访问
一种有关实线性空间中的集合的特殊的锥.它定义为实线性空间的集合中的一点上的切方向的全体.有限维空间中的光滑曲线、曲面以至更一般的光滑流形中的一点处的切方向的全体是可以通过微分法明确定义的.
杜勃维茨基说:“我们现在需要研究关于不同坐标之间的仿射变化,也就是坐标之间会乘以矩阵来互相变化。然后需要找到一种变化的方法,还有一种形状,让这个形状上的每个点上的向量都一一对应。”
米柳金说:“那只能是找凸集,一种没有凹面的形状。凸集合上每个点都有切线,这个切线就是向量形成的一个锥形。是一种切锥。”
杜波维茨基说:“有理,毕竟凸面物上的切线没办法好好研究。”
米柳金和杜波维茨基都开始各自研究各种情况的切锥。
再次之前有一种切锥,是相依锥.这种锥是布里冈(Bouligand,G.L.)在20世纪30年代为研究几何问题而提出的,后来在非线性规划研究中又被重新提出,目前在非线性规划的文献中所说的切锥通常就指这种锥。这是一个闭锥。
而米柳金和杜波维茨基提出的是邻接锥,亦称中间锥、可导锥、杜勃维茨基-米柳金锥、尤尔塞斯科锥。
后来一个叫克拉克的数学家提出了克拉克切锥。亦称围邻锥.它是克拉克(Clarke,F.H.)在研究局部李普希茨函数的广义梯度理论时提出的。
这几种锥依次一个比一个小.但当K是凸集时,它们都与原来定义的切锥重合.
这些切锥也可以用序列极限来
对Q,R,S取各种不同的值及不同的次序,由此可定义出几十种切锥.其中最大的是T???(K,x),它称为共依锥,也是布里冈在30年代引进的;最小的是T???(K,x),它称为超切锥,这是个开凸锥,当它非空时,恰好是CK(x)的内部;T·??(K,x)有时也有应用,它称为内部锥,也称杜勃维茨基-米柳金锥。
正如在经典分析中,导数概念和切方向的概念是紧密联系在一起的,在非光滑分析中,各种广义导数概念就可通过各种切锥来定义.此外,还有若干种切锥的概念不能包括在上述一般定义中.
喜欢数学心请大家收藏:()数学心
剑神韩友平第一部 偏偏宠上你 神奇宝贝:开局十连抽,获得梦幻 大清话事人 开局成为峰主,打造万古不朽仙门 高冷学神之攻略手册 春过辽河滩 都市重生:我在七日世界刷神宠 跨越阶层的恋爱 柯南!快看,你爸爸过来了! 尘封的仙路 开局被渣,反手投资女帝无敌 好运撞末日 包青天断案传奇故事汇 一本杂录 在明末奋斗 沉睡千年醒来,749局找上门 仙骨 造孽啊,曹贼竟是我自己 邪灵战神
一个浑浑噩噩的少年,在阳台吹风不小心掉了下去,死过一次的他,决定开始改变,故事从这里开始,他就是林浩...
王虎穿越了,而且悲催的成了五指山下的一只老虎。我去,这是要做猴哥虎皮裙的节奏?王虎表示不服。作为一只21世纪穿越来的新时代老虎,怎么着也要和猴哥拜把子,做兄弟啊!此时此刻齐天大圣孙悟空被压五行山马上就满五百年,再有十年,波澜壮阔,影响三界格局的西天取经之旅就要开始,看王虎如何在其中搅动三界风云,与猴哥一起再掀万...
...
男人一辈子最值得骄傲的事里包括服一次役,当一回特种兵,和世界上最强的军人交手。还有,为自己的祖国奉献一次青春,为这片热土上的人民拼一次命。这些,庄严都做到了。(此书致敬每一位曾为国家奉献过青春,流过血洒过汗的共和国军人!读者群号764555748)...
一朝重生,亲爹从军阵亡,亲娘病死,留下体弱的弟弟和青砖瓦房几间。无奈家有极品亲戚,占了我家房还想害我姐弟性命!幸得好心夫妻垂帘,才有这安稳日子过。偶然山中救得老道一位,得其倾囊相授修得一身好武艺。骤闻亲爹消息,变身潇洒少年郎,入了天下闻名的孟家军,立军功当将军,可是那个总阴魂不散的小王爷是要搞哪样?虾米?威胁我?...
...