书中文学网

手机浏览器扫描二维码访问

第三百二十五章 路德维希施莱夫利思索高维空间问题高维空间(第1页)

施莱夫利是瑞士的几何学家,1814-1895年活了80多岁。

在1850年的时候,他开始深入思考一个很有意义的问题。

就是高维空间的问题。

他知道在亚里士多德时代,普遍人认为世界是有3维空间的。

即使是有4维空间,也不容易想象。

但是,也不是不可以研究的。

这其中,可以用很都角度去研究高维度空间的问题。

研究立体几何图像,可以投影在2维平面中。所以研究4维物体,可以投影在三维空间中来研究。

很多东西,即使没有办法想象到,但也可以想到很多基本的东西,比如勾股定理在高维空间的计算中也是实用的。

而今天,施莱夫利想从最简单的角度来想高维空间的问题,也是一种规律。

那就是单形,也就是几何中最基本的形状。0维单形是点,1维单形是线段,2维单形是三角形,3维单形是4面体等等。

按照以上来看,单形在0、1、2、3、4、5维空间中。

对应单形点的个数分别为1、2、3、4、5.

对应单形线的个数为1、3、6、10、15,这个可以数一数。

对于面、甚至体必然也是存在着同时也重要的,但是对此问题,很多数学家都犯了难,表示很难数。

而对施莱夫利,他找到一个奇妙的办法,就是他突然发现1、3、6、10、15这个数字与杨辉三角中第三排的数字对应。

不仅仅是这样的数字跟高维单形的线的个数之后是吻合的,而且更厉害的是,杨辉三角中第四排和第五排的数字包含了面个数和体个数的信息。

施莱夫利找到很好的办法,很简单的得出了,对应单形的面的个数0、1、4、10、20个。

对应体的个数为0、0、1、5、15个,这个光靠想象的去数,是很不容易的,但用杨辉三角特别容易得到。

甚至连4维体的个数为0、0、0、1、6等等。

施莱夫利知道研究高维度的很多问题可以用杨辉三角,只是杨辉三角本身他也需要思考一阵了。

如果杨辉三角有了这种能力,说明它有一种整合高维空间的能力。

所以他开始考虑高维杨辉三角,这成为他的习惯。但三维杨辉三角的绘制有困难。

他试图想看看是不是有更多的东西会符合杨辉三角,同时把高维杨辉三角转化成二维的杨辉三角问题。

喜欢数学心请大家收藏:()数学心

开局成为峰主,打造万古不朽仙门  剑神韩友平第一部  仙骨  柯南!快看,你爸爸过来了!  春过辽河滩  尘封的仙路  偏偏宠上你  包青天断案传奇故事汇  沉睡千年醒来,749局找上门  开局被渣,反手投资女帝无敌  邪灵战神  都市重生:我在七日世界刷神宠  造孽啊,曹贼竟是我自己  好运撞末日  跨越阶层的恋爱  神奇宝贝:开局十连抽,获得梦幻  在明末奋斗  一本杂录  大清话事人  高冷学神之攻略手册  

热门小说推荐
传奇篮神

传奇篮神

一个浑浑噩噩的少年,在阳台吹风不小心掉了下去,死过一次的他,决定开始改变,故事从这里开始,他就是林浩...

影后重生:厉先生撩妻成瘾

影后重生:厉先生撩妻成瘾

甜宠无虐+日更+萌宝+智脑一个大佬和重生来的小媳妇甜蜜日常!一个娱乐小透明凭借智脑逆袭成超级影后的故事~...

武林店小二

武林店小二

江湖日报讯肯麦郎连锁客栈享誉大明各府,其总部却是京城一家名为来福的小客栈。来福客栈在江湖上大名鼎鼎,即便费用高昂,上到各派掌门下到江湖游侠,都挤破脑袋想去来福客栈吃顿饭。记者有幸请到武林盟主,揭开来福客栈的秘密!来福客栈日常一幕少林方丈,你怎么吃饭不给钱啊?偶弥陀佛,出家人身无分文,这顿饭可否算作化缘?不行!武当掌门没钱吃饭,还在后院洗碗呢!你若不给钱,就去洗茅房!来福客栈日常二幕丐帮长老,瞧你样子就没钱吃饭,你来客栈干啥?听闻来福客栈可以拿东西抵押,我这里有本上乘的秘...

我和大圣是兄弟

我和大圣是兄弟

王虎穿越了,而且悲催的成了五指山下的一只老虎。我去,这是要做猴哥虎皮裙的节奏?王虎表示不服。作为一只21世纪穿越来的新时代老虎,怎么着也要和猴哥拜把子,做兄弟啊!此时此刻齐天大圣孙悟空被压五行山马上就满五百年,再有十年,波澜壮阔,影响三界格局的西天取经之旅就要开始,看王虎如何在其中搅动三界风云,与猴哥一起再掀万...

极品捉妖系统

极品捉妖系统

万众瞩目之下,楚浩扔出一柄剑这轩辕剑你拿好,以后别在我面前装逼。这天,这地,这沧海,这宇宙,谁都无法阻止我。ps看完了?新书搜索从诡秘复苏开始不当人推荐票刷起来,让我们再次征战。...

每日热搜小说推荐